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1. Introduction

The study of non-Abelian gauge theories is complicated by the fact that by restricting one-

self to states in the Hilbert space that are gauge invariant, or, alternatively, representatives

of equivalence classes of states related by gauge transformations, one almost necessarily

introduces interactions that complicate calculations. In perturbative treatments gauge in-

variance is achieved at the expense of the form of the bare propagator of the gauge-boson,

or the introduction of ghosts, while in functional treatments Gauss’ law must either be

imposed as a constraint, or solved implicitly through a change of variables [1], as is also

the case in lattice calculations. Manifestly gauge invariant calculations [2 – 5] may also be

done in the Effective Renormalization Group formalism [6 – 8] which necessitates the intro-

duction of heavy regularization machinery. Finally, there exist studies of the anisotropic

version of weakly-coupled (2+1)-dimensional Yang-Mills theory in which one dimension is

descretized, replacing the continuum theory with infinitely many (integrable) chiral sigma

models [9, 10].

One promising solution to the constraint problem is the use of Wilson-line variables [1],

for example in the work by Karabali and Nair on (2+1)-dimensional Yang-Mills theory [11].

The strength of their approach is that the field variables are encoded into a single variable

along with a reality condition that allows it to be treated holomorphically, opening up

the rich structure of complex analysis. Recent calculations by Leigh, Minic and Yelnikov

based on this work have also yielded a candidate ground-state wave-functional as well as

approximate analytical predictions for the JPC = 0++ and JPC = 0−− glueball masses [12]
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which are in good agreement with lattice calculations. However, the effect of the non-trivial

configuration space measure, i.e., the WZW action, was omitted from calculations without

sufficient justification.

In the following section we review the Karabali-Nair formalism and outline the pro-

cedure used by Leigh et al. to obtain the vacuum wave-functional and glueball spectrum.

In part III we attempt a conservative approximation of the glueball spectrum that incor-

porates the WZW measure by expanding relevant operators about the Abelian limit. We

then compare our results to that of [12] and analyze the robustness of the solution.

2. Background

2.1 Karabali-Nair formalism

We consider SU(N) Yang-Mills in (2 + 1)-dimensions in the Hamiltonian formalism, and

denote the gauge potential by Ai = −iAa
i t

a, i = 1 . . . 2, where the N × N Hermitian

matrices ta generate the su(N) Lie algebra [ta, tb] = ifabctc and we choose tr(tatb) = 1
2δab,

while the gauge covariant derivative in the fundamental representation is Di = ∂i + Ai.

In two dimensions, the magnetic field has only one independent component, given by

B = ∗
(

[Di,Dj ] dxi ∧ dxj
)

. In the Hamiltonian formalism the component A0 is used up as

a Lagrange multiplier in enforcing the Gauss’ law constraint D ·E = 0, and is subsequently

ignored. Thus at this point we have yet to fix a gauge, so that the theory is invariant

under (time independent) gauge transformations. We can write Ai in terms of path-ordered

phases (Wilson lines) with one point at infinity, i.e.,

Ai = −(∂iMi)M
−1
i , (no summation), (2.1)

where

Mi(x) = Pe−
R

∞
xdyjAj , (2.2)

and the integration contour is taken holding all but xi fixed. Note that Ai is not a pure

gauge since the matrices Mi are generally different. That the path-ordered phases encode

at least as much information as the gauge potential is evident from equations (2.1), (2.2)

but this can also be seen as follows: From knowledge of Mi everywhere we can construct

infinitesimal holonomies which are proportional to Fµν , from which we can reconstruct Aµ

in the coordinate gauge (xµAµ = 0) [13, 14].

It is convenient to introduce the complex coordinates z = x − iy and z̄ = x + iy.

Correspondingly, ∂ ≡ ∂
∂z = 1

2 (∂1 + i∂2) and ∂̄ ≡ ∂
∂z̄ = 1

2 (∂1 − i∂2), while A ≡ Az =
1
2 (A1 + iA2) and Ā ≡ Az̄ = 1

2 (A1 − iA2). We can again define matrices Mz and Mz̄ that

satisfy Az = −∂zMzM
−1
z and Az̄ = −∂z̄Mz̄M

−1
z̄ respectively. Noting that Mz̄ = M

†−1
z , we

drop the subscript z:

A = −∂MM−1, (2.3a)

Ā = M †−1∂̄M †. (2.3b)

The path-ordered phase M ∈ SL(N, C) transforms locally if we restrict ourselves to

gauge transformations that are fixed (normally to 1) at infinity. Under a time-independent
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gauge transformation Ai → A
g
i = gAg−1 − ∂igg−1 where g ∈ SU(N), M transforms as

M → Mg = gM . We are led to define a local gauge-invariant variable H = M †M .

The change of variables from (A, Ā) → H involves a Jacobian determinant so that the

measure on the configuration space C (the space of gauge potentials modulo allowable

gauge transformations) is [11]

dµ(C) = det(DD̄)dµ(H), (2.4)

=

[

det′(∂∂̄)
∫

d2x

]dim G

e2 cASWZW[H]dµ(H), (2.5)

where cA is the quadratic Casimir in the adjoint representation, i.e., (T cT c)ab ≡
−f cadf cdb = cAδab, equal to N for SU(N), and SWZW[H] is the Wess-Zumino-Witten

action,

SWZW[H] =
1

2π

∫

d2x tr(∂H∂̄H−1) +
i

12π

∫

d3x εµνα tr(H−1∂µHH−1∂νHH−1∂αH).

(2.6)

Careful regularization is involved in obtaining this result as the determinant has an

anomaly. Inner products and expectation values are calculated using this measure, as

〈Ψ1|O|Ψ2〉 =

∫

dµ(H)e2 cASWZW[H]Ψ∗
1[H]OΨ2[H], (2.7)

so that expectation values are essentially correlators of the Euclidean, Hermitian WZW

theory. These, in turn, can be found (at least in principle) by solving the Knizhnik-

Zamolodchikov equations for the unitary theory and performing an analytic continuation

to the Hermitian case [11]. However, already at the four-point level one encounters non-

trivial expressions involving hypergeometric functions [15], whereas the calculation wish to

attempt contains an infinite series of such correlators (from expanding the wave-functional),

with the next-leading-order being a six-point function. The need for approximation is

therefore evident.

In the Hermitian WZW theory only correlators made up of integrable representations

of the current algebra are well defined, so that all objects of interest can be written in

terms of the WZW current J = cA
π ∂HH−1 [16]. This can also be seen from the observation

that (−∂HH−1, 0) is a field-dependent SL(N, C)-valued gauge transformation of (A, Ā).

Since the Gauss’ law operator generates gauge transformations and vanishes on physical

states, we may everywhere let (A, Ā) → (−∂HH−1, 0). In particular, the Hamiltonian

H =
∫

d2x tr
(

g2E2
i + 1

g2 B2
)

in terms of the variable J can be written as [16]

H = m

[
∫

x
Ja(x)

δ

δJa(x)
+

∫

x

∫

y
Ωab(x − y)

δ

δJa(x)

δ

δJb(y)

]

+
π

mcA

∫

x
∂̄Ja(x)∂̄Ja(x), (2.8)

where m ≡ g2cA
2π , Ωab(x−y) ≡ cA

π Dab
x Ḡ(y−x) and the Green’s function Ḡ is defined through

∂̄yḠ(y − x) = δ(2)(y − x).

For physical states, Ψphys[A, Ā] = Ψphys

[

− π
cA

J, 0
]

, so that wave-functionals con-

structed out of J are automatically gauge invariant. The price paid for implicitly solving
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the constraint D · E = 0 is a local, “holomorphic” invariance of equations (2.3a), (2.3b)

under M(z, z̄) → M(z, z̄)h†(z̄),M †(z, z̄) → M(z, z̄)h(z) where h(z) is a unitary matrix

depending only on z. Physical states must therefore also be holomorphically invariant.

2.2 Vacuum wave-functional

Noting that the simple wave-functional Ψ[J ] = 1 is normalizable and an eigenstate of T ,

a solution to the Schrödinger equation can be obtained [16] by expanding around this

infinite coupling limit. Writing Ψ[J ] = eP , we note that HΨ[J ] = 0 implies e−P HeP =

V − [H,P ] + . . . = 0, which leads to a recursion relation for P in powers of m. The

resulting wave-functional resembles that of [17], which was obtained by a perturbative

resummation in the strong-coupling regime, as well as of [18, 19], obtained my Monte

Carlo methods, and for example [20], though the solution is local in J rather than in B.

Using this wave-functional, Karabali and Nair were able to exhibit the mass gap of the

theory as well as demonstrate area-law behaviour of the Wilson loop, giving evidence for

confinement [21, 16]. However, while the wave-functional can be resummed to second order

in J , giving [16]

P = − 1

2g2

∫

x,y
B(x)

1

[m + (m2 −∇2)
1
2 ]

B(y), (2.9)

the solution cannot be covariant order-by-order in J , as this variable transforms as a

connection. Therefore the inclusion of terms of higher order in J is necessary for gauge

covariance (or holomorphy), while terms of higher order in m are needed for consistency

with the Schrödinger equation. For computational purposes, some tradeoff is ultimately

necessary.

Leigh et al. instead proposed the following Ansatz for the vacuum wave-functional [12]:

Ψ[J ] = exp

(

− π

2cAm2

∫

∂̄JK(L)∂̄J

)

+ . . . , (2.10)

where the kernel K is a power series in the holomorphic-covariant Laplacian ∆ ≡ {D,∂̄}
2 ≡

m2L. Here and onwards traces over adjoint indices are implicit. The general form of

Ψ[J ] was chosen to reflect the notion, as argued heuristically in [22], that in the N → ∞
limit, the variables ∂̄J somehow represent the “correct degrees of freedom” of the system

(i.e., those in which the ground-state wave-functional is Gaussian). The use of the covariant

Laplacian is then required by consistency with holomorphic invariance of the theory. Terms

in the exponent of higher order in ∂̄J that can’t be absorbed into the kernel are denoted

by ellipsis; therefore, the Ansatz is not the most general one. Note that ∂̄JK(L)∂̄J =

∂̄JK
(

∂̄∂
m2

)

∂̄J + O(J3). Writing Ψ[J ] = eP , the action of kinetic energy term in (2.8) on

Ψ[J ] becomes

TΨ[J ] =

[

TP + m

∫

x

∫

y
Ωab(x − y)

δP

δJa(x)

δP

δJb(y)

]

Ψ[J ]. (2.11)

To second order in ∂̄J , the second term in brackets yields

π

cAm

∫

d2x ∂̄J

[

∂∂̄

m2
K2

(

∂∂̄

m2

)]

∂̄J + . . . (2.12)
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The action of T on terms of the form On ≡
∫

∂̄J(∆n)∂̄J is less straight-forward. In

reference [22] Leigh et al. argue that holomorphic invariance requires mixing between

terms of different order in ∂̄J in such a way that TOn = (2 + n)mOn + . . ., with the result

explicitly demonstrated for O0 and O1. Furthermore, it is argued that in the large-N limit

this result stems from T acting as a derivation in the Eguchi-Kawai reduction method, so

that the factor (2 + n) follows from simple commutator algebra (see [23], and references

therein). Whether this result acquires corrections for higher values of n or how it behaves

for finite N is not known. Formally, then, the Schrödinger equation becomes

HΨ[J ] =

[

π

cAm

∫

∂̄J

(

− 1

2L

d

dL

[

L2K(L)
]

+ LK2(L) + 1

)

∂̄J

]

Ψ = EΨ[J ]. (2.13)

The eigenvalue equation

− 1

2L

d

dL

[

L2K(L)
]

+ LK2(L) + 1 = 0 (2.14)

is then solvable using the substitution K = − U ′

2U which casts it into Bessel form. The

unique, normalizable solution with correct UV asymptotics was found by Leigh et al., to

be [12]:

K(L) =
1√
L

J2(4
√

L)

J1(4
√

L)
. (2.15)

As mentioned earlier, the form of the Ansatz is somewhat tautological once the vari-

ables ∂̄J are assumed to be the correct physical ones. However, as many of the resulting

steps, for example, the requirement of a holomorphic covariant Laplacian, ruin the precise

Gaussian form of the wave-functional, the Ansatz needs to be motivated further. Note

that ∂̄J = − 2π
cA

M †−1BM †, so that in many expressions ∂̄J simply reduces to the magnetic

field. At large momentum (weak coupling) the field modes behave like free fields, and the

well-known (Abelian) Maxwell-field ground-state wave-functional [24, 25] factors from the

full wave-functional:

Ψ[A]UV = e
− 1

2g2

R

x,y
B(x) 1

(−∇2)1/2
B(y)

. (2.16)

On the other hand, many have argued [26] or found [17, 16] that the in the low-momentum

(strong coupling) limit the wave-functional becomes

Ψ[A]IR = e
− 1

2mg2

R

xB(x)2
. (2.17)

Thus the Ansatz may be seen as the minimal (but certainly not unique) way to interpolate

between between these two limits while retaining the necessary holomorphic symmetry, and

is analogous to the Ansatz proposed in [27]. As was pointed out by Greensite and Olejńık

in [28], the Abelian wave-functional equation (2.16) can be made to satisfy the non-Abelian

version of Gauss’ law exactly whilst solving the Schrödinger equation to zeroth order in g by

replacing ∇
2 with its gauge-covariant form D2. There it was found that this substitution

leads to a confining state. But
{

D, D̄
}

= 1
2D

2 so that ∆ = 1
2

{

D, ∂̄
}

is precisely the form

of this operator where gauge covariance has been supplanted by holomorphic covariance.
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Therefore the Ansatz has many of the necessary properties, though these are certainly not

sufficient.

Indeed, the solution found by Leigh et al., does not agree with the exact (series)

solution obtained by Karabali and Nair [16] at higher orders in the ’t Hooft coupling m.

However, when solving the Schrödinger equation to second order in ∂̄J , only terms that are

required for consistency were kept. Furthermore, the wave-functional obtained by Leigh

et al., is only motivated in the strict large-N limit, and so does not contain all leading 1
N

corrections. Thus, while the Ansatz leads to an approximate, closed form wave-functional,

from which correlation functions can be computed, it sacrifices corrections only seen in an

exact, order-by-order treatment like that in [16].

2.3 Mass spectrum

In order to extract meaningful information from the ground state Ψ it is necessary to

compute correlation functions as in equation (2.7). In [22] the operator tr ∂̄J∂̄J was found

to be even under parity and charge conjugation, and so creates 0++ states. A good starting

point then is the calculation of
〈

(∂̄J∂̄J)x(∂̄J∂̄J)y
〉

. As we have already noted, such a

computation is presently intractable. However, in [22, 12] it is argued that in the large-N

limit, the variables ∂̄J represent the correct physical degrees of freedom so that integration

over these variables can be done as in a free theory, in the sense that

〈

∂̄Ja
x ∂̄Jb

y

〉

∼ δabK−1(|x − y|). (2.18)

K−1(|x − y|)2 is then identified with a particular two-point function probing 0++ glueball

states, so that the mass spectrum of the vacuum can be read off from the analytic structure

of K−1(k)2. Essentially, it is argued that in the ∂̄J configuration space the WZW measure

can be neglected. The interpretation of this statement will be explored further in this

paper.

The asymptotic form of K−1(|x − y|)2 was found to be [12]

K−1(|x − y|)2 → 1

32π|x − y|

∞
∑

n, m=1

(MnMm)3/2e−(Mn+Mm)|x−y|, (2.19)

where Mn ≡ j2,nm
2 , n = 1, 2, 3 . . . and j2,n are the zeros of J2(z). Comparing to the two-

point function of the free Boson, equation (A.1), we can see that the 0++ states have

masses given by various combinations of Mn. This result is in good agreement with lattice

calculations presented in [29, 30] and in the next section we will attempt to give justification

for this agreement in light of the approximations that have been made.

3. Controlled approximation

3.1 Abelian expansion

The statement that integration over the variables ∂̄J can be done explicitly should not

be interpreted literally, as the change of variables from H to ∂̄J involves a further factor

– 6 –
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det(D∂̄)−1 where D is now the holomorphic covariant derivative with J as connection.

Although the derivatives D and ∂̄ are related to the original expressed in terms of (A, Ā)

through conjugation by M †−1, the determinant also suffers from a multiplicative anomaly

which is expressed by the Polyakov-Wiegmann identity that relates SWZW[gh] to SWZW[g]

and SWZW[h] (see [31, 32]). Therefore we shall approach the problem by exploring it in a

particular limit where the WZW action at least allows for tractable calculations.

We now attempt to calculate
〈

(∂̄J∂̄J)x(∂̄J∂̄J)y
〉

by performing the path integral in

equation (2.7) in the Abelian limit. Following [21] we write H = eϕ and expand terms of

the form H−1f(ϕ)H in powers of ϕ. In the adjoint representation, ϕab = fabcϕc, so that

an expansion in ϕ is necessarily an expansion in the structure constants. In the limit of

small ϕ (see e.g., [21, 33]), we can write the wave-functional and WZW factor in Gaussian

form and calculate the four-point function as in a Euclidean field theory with action given

by 2cAS[H] + ln Ψ∗[H]Ψ[H]. In all cases we expand terms inside the exponential, but not

the exponential itself, i.e., we are performing a selective resummation [21].

The measure factor becomes the exponential of the free complex scalar field action,

e2cAS[H] ≈ e−
cA
2π

R

d2z ∂ϕa∂̄ϕa
. The complete measure factor can be integrated, so that the

volume of the configuration space C is finite, which leads to the existence of a mass-gap [21].

By approximating the WZW factor in this way we hope to make the calculation tractable

and at the same time capture non-trivial effects. Already we notice that in the Abelian

limit the zero mode causes the volume of C to diverge - it was already noted in [21] that

the WZW factor cannot be obtained in the Abelian limit; therefore the approximation may

break down at low momentum.

The correlation function
〈

(∂̄J∂̄J)x(∂̄J∂̄J)y
〉

gives, up to a disconnected diagram, the

square of the two-point function:

〈

(∂̄J∂̄J)x(∂̄J∂̄J)y
〉

= 2
〈

∂̄Jx∂̄Jy

〉 〈

∂̄Jx∂̄Jy

〉

. (3.1)

To expand the wave-functional, note that [34]

J =
cA

π

∫ 1

0
ds esϕata(∂ϕbtb)e−sϕctc , (3.2)

≈ cA

π
∂ϕ + . . . , (3.3)

where we have dropped higher powers of ϕ, so that ∂̄J ≈ cA
π

∇2

4 ϕ. That we are truly in

the Abelian limit can be seen by allowing terms inside equation (3.2) to commute, thereby

obtaining equation (3.3) exactly. Also, (Lϕ)(k) ≈ − k2

4m2 ϕ(k), so that the exponent of the

wave-functional becomes
∫

d2z ∂̄JaK

(

∂∂̄

m2

)

∂̄Ja ≈
(ca

π

)2
∫

d2k ϕa(k)
k2

4
K

(

− k2

4m2

)

k2

4
ϕa(−k). (3.4)

Finally,

e2cAS[H]Ψ∗[H]Ψ[H] ≈ exp

{

− cA

2π

∫

d2k ϕa(k)
2k2

4

[

2

k2
+

1

m2
K

(

− k2

4m2

)]

k2

4
ϕa(−k)

}

.

(3.5)
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To calculate
〈

∂̄J(x)∂̄J(y)
〉

, it is sufficient to know
〈

ϕa(x)ϕb(y)
〉

, as the former can be

obtained from the latter by repeated differentiation. Therefore we have to analyze the field

theory with effective kernel given by

K
(

− k2

4m2

)

≡ 1

2

4m2

k2
+ K

(

− k2

4m2

)

. (3.6)

3.2 Analytic structure

Let us begin by writing the effective kernel in terms of the formal parameter y ≡ 4
√

L:

K(L) = −1

2

1

L
+

1√
L

J2(4
√

L)

J1(4
√

L)
(3.7)

=
4

y

[

−2

y
+

J2(y)

J1(y)

]

. (3.8)

As a first step towards finding the inverse of the kernel, consider the identity [35]

Jν−1(y) + Jν+1(y) =
2ν

y
Jν(y), (3.9)

from which we immediately see that

K(L) = −4

y

J0(y)

J1(y)
. (3.10)

Another identity of interest is

J1(y)

J0(y)
= 2y

∞
∑

s=1

1

j2
0,s − y2

, (3.11)

where jν,s denotes the sth zero of Jν(y). This result can be derived using common Bessel

function identities along with the infinite product representation,

Jν(y) =

(

1
2y

)ν

Γ(ν + 1)

∞
∏

s=1

(

1 − y2

j2
ν,s

)

, (3.12)

and the fact that Jν(y) is a meromorphic function. Then

K(L)−1 =
1

2

∞
∑

s=1

y2

y2 − j2
0,s

. (3.13)

We therefore take the inverse effective kernel to have the following analytical structure

K−1

(

− k2

4m2

)

=
1

2

∞
∑

s=1

y2

y2 − j2
0,s

, (3.14)

=
1

2

∞
∑

s=1

(

1 − M2
s

k2 + M2
s

)

, (3.15)
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State Lattice1 Leigh, et al. Our prediction

0++ 4.065 ± 0.055 4.10 4.40

0++∗ 6.18 ± 0.13 5.41 5.65

0++∗ 6.72 6.90

0++∗∗ 7.99 ± 0.22 7.99 8.15

0++∗∗∗ 9.44 ± 0.38 9.27 9.40

Table 1: Comparison of 0++ glueball masses given in units of string tension
√

σ ≈
√

π

2

where Ms ≡ j0,sm
2 . Following the treatment of [12], the real space kernel has the following

asymptotic behaviour:

K−1(|x − y|) = −1

2

∞
∑

s=1

M2
s

2π
K0 (Ms|x − y|) , (3.16)

→ −1

4

∞
∑

s=1

M
3
2
s

1
√

2π|x − y|
e−Ms|x−y|, (3.17)

while the four-point function is

K−1(|x − y|)2 =
1

32π|x − y|

∞
∑

r,s=1

(MrMs)
3
2 e−(Mr+Ms)|x−y|. (3.18)

Comparing to the propagator of the free Boson evaluated at fixed time, equation (A.1), we

see that a multitude of particles with masses Mr + Ms have been identified. A comparison

between our masses and those obtained in [12] is given in table 1. Large-N lattice results [29,

30, 36] given for comparison in [12] have also been reproduced. We have omitted the

spurious pole due to j0,1 as it has no obvious value to compare to. As noted in [12],

the discrepancy with the 0++∗ lattice result may suggest that this is in fact two states

(corresponding to M1 +M2 and M2 +M2) which are not resolved by the lattice calculation,

or it may indicate a low-momentum breakdown of our calculation.

4. Discussion

The calculation presented here shows that in the Abelian limit the mass spectrum probed

by JPC = 0++ operators comprises sums of pairs of zeros of J0(y), in contrast with the

result of Leigh et al., which expresses these masses in terms of zeros of J2(y). Thus we find

a correction due to the inclusion of the WZW action to lowest order in fabc. Asymptotically

Jν(y) →
√

2
πy cos

(

y − νπ
2 − π

4

)

so that J2(y) → −J0(y) as y → ∞. Therefore our results

reproduce those in [12] at large momentum and give justification for approximations made

therein. That the results agree at large momentum suggests that the analytic structure of

the wave-functional is rather robust against short-distance corrections. At low momentum

(small y), however, an additional pole arises due to j0,1, which is not seen in [12], and gives

1See [29, 30, 36]
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a constituent mass of M1 ≈ 0.96
√

σ. Combinations using M1 do not seem to appear in

lattice calculations presented in [29, 30]. Whether this signals a breakdown of the Abelian

approximation at low momentum that can be corrected by continuing the expansion to

higher order is a possible direction for future investigation.
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A. Free boson in (2+1)-dimensions

In order to make a connection between the correlators obtained in the Hamiltonian formal-

ism, e.g., equation (3.18), with the (covariant) Källen-Lehmann spectral representation, we

need to recognize the analytic structure of a 1-particle state when expressed non-covariantly.

To do this, we analyze the two-point function of the free Boson for purely spatial separation:

∆F (x − y) =

∫

d2k

(2π)2
1√

k2 + m2
eik·r,

=

∫ ∞

0

k dk

(2π)2
2πJ0(kr)√
k2 + m2

,

=
1

2π|x − y|e
−m|x−y|. (A.1)
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